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Introduction
To understand battery systems, simulation tools 
are often employed. For a high level of accu-
racy and reliability, these tools need accurate 
values of relevant physico-chemical parameters 
of the materials being involved. In case of binary 
electrolyte solutions, at least four different con-
centration and temperature-dependent trans-
port parameters are required: the conductivity 
σ(T,c), the binary diffusion coefficient D±(T,c), 
the transference number t+(T,c), and the ther-
modynamic factor f±(T,c).
In this application note, we demonstrate how 
to determine the binary diffusion coefficient of 
a commercial liquid binary lithium ion battery 
electrolyte based on a galvanostatic pulse meth-
ode elaborated e.g. by Ehrl and Landesfeind et 
al. [1,2] and Hou et al. [3]. 

Experimental 
a) Chemicals
As liquid binary lithium ion battery electrolyte, 
1  mol/L LiPF6 (lithium hexafluorophosphate) 
solution in EC (ethylene carbonate) : DMC (di-
methyl carbonate) 1:1 (v:v) was purchased from 
Sigma-Aldrich Chemie GmbH and was used 
without any further purification. Metallic lithium 
foil from Rockwood Lithium GmbH (now part of 
Albemarle Corp.) in high purity was used for pre-
paring the counter and working electrode. A po-
rous polyethylene film (PE, Nitto Denko Corp., 
Sunmap® LC) with a thickness of  500 µm and 
30% porosity was used as separator. To ensure 
good wettability, the separator was stored in 
the electrolyte solution for 48 h before cell as-
sembling. All chemicals have been stored and 
handled inside of an argon filled glove box (M. 
Braun Inertgas-Systeme GmbH).

b) Sample preparation & measuring setup
For electrochemical measurements, a TSC bat-
tery advanced measuring cell in combination 
with a Microcell HC setup (rhd instruments 
GmbH & Co. KG) was used. The design of the 
measuring cell is shown as schematic drawing in 
Figure 1. 
As working and counter electrode, metallic lith-
ium was used. The active electrode area was 

1.13 cm2. The PE separator soaked with elec-
trolyte solution was placed between the lithium 
electrodes.
The sample temperature was conrolled by the 
Microcell HC Setup using Peltier technique. The 
temperature accuracy of this setup is 0.1  °C 
with regard to the sensor position in the meas-
uring cell base unit. For the experiments pre-
sented here, the temperature was kept constant 
at 20 °C.

Figure 1:  Schematic drawing of the TSC battery 
advanced measuring cell. As working and counter 
electrode, metallic lithium was used. A porous poly-
ethylene separator soaked with 1 mol/L LiPF6 solu-
tion in EC:DMC 1:1 (v:v) was placed between the 
electrodes. 

A PGStat204 potentiostat/galvanostat  equipped 
with a FRA32-module (Metrohm Autolab B.V.) 
was used for EIS and time-domain experiments. 
For data acquisition, the NOVA 2.1.4 software 
was used. The control of the Microcell HC tem-
perature unit is integrated in NOVA.
Impedance data was evaluated by means of 
the RelaxIS 3® software suite (rhd instruments 
GmbH & Co. KG).

c) Measurement parameters
An impedance spectrum for frequencies ranging 
from 100 kHz down to 1 Hz (20 frequencies per 
decade) was measured with an AC voltage am-
plitude of 1 mV (rms). In a second step, alternat-
ing positive and negative pulse currents (GPP)
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of 150 µA corresponding to a current density of 
~ 133 µA/cm2 were applied to the sample for a 
duration of 15 min, followed by a open circuit 
potential measurement for 3.5 h in each case.

Experimental 
step no.

Action to be performed

1
Setting temperature, 1800 s 
hold time for temperature 
equilibration

2

Performing EIS measurement 
with VAC(rms) = 1 mV and 
f = 100 kHz ... 1 Hz (20 
frequencies per decade)

3 Performing GPP experiment 
with +150 µA for 900 s

4
Performing OCP measure-
ment for 10800 s, record 
data every 1 s

5 Performing GPP experiment 
with -150 µA for 900 s

6
Performing OCP measure-
ment for 10800 s, record 
data every 1 s

Results
By fitting the impedance spectrum, the resist-
ance for bulk ion transport through the porous 
separator network Rbulk can be determined to be 
63.3 Ω, see figure 2. 
As equivalent circuit for analyzing the data, a 
serial connection of an Ohmic resistor Rbulk  rep-
resenting the ion transport through the porous 
separator network, and a parallel R-CPE element 
representing the solid electrolyte interface (SEI) 
properties as well as the charge transfer at the 
lithium-SEI interface was chosen. Splitting the 
R-CPE element as e.g. suggested by Wohde et 
al. [4] was not considered since that has a nega-
tive effect on the fit quality most likely caused 
by overlapping time constants for the processes 
taking place at the litium-SEI interface and in-
side the SEI. 
From Rbulk, the conductivity can be calculated 
taking into account the cell constant which is 
given by the separator thickness dseparator and the 
active electrode area Aelectrode: 

The conductivity of the electrolyte-soaked PE 
separator is 0.7 mS/cm: 

Figure 2:  Impedance spectrum measured for frequen-
cies ranging from 100 kHz to 1 Hz using an ac volta-
ge amplitude of 1 mV (rms). 

Dividing the conductivity of the “free” electro-
lyte solution (9.9 mS/cm @ 20 °C) by the con-
ductivity of the electrolyte-soaked separator foil, 
the so-called MacMullin number NM can be cal-
culated, see also our application note ‘Determi-
nation of the MacMullin number’ [5]:

The resulting MacMullin number NM for the 
chosen PE separator is 14.1. Since the porosity 
τseparator of the separator material is known, the 
tortuosity τseparator can be calculated as well:

The resulting tortuosity τseparator is 4.2 which 
is slightly lower than the value determined by 
Landesfeind et al. [2] for the same material.
To determine the binary diffusion coefficient, the 
absolute OCP values measured after a negative 
galvanostatic current pulse are plotted semi-log-
arithmically versus time, see Figure 3. 
At long times after the current interrupt, a linear 
relationship with slope mln is observed, which en-
ables the calculation of the binary diffusion coef-
ficient D± for the given electrolyte concentration 
of 1 mol/L at a temperature of 20 °C [1,2]:
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Here, a slope mln of 0.0023 s-1 can be determined. 
Inserting that value into the formula results in a 
binary diffusion coefficient of 2.5 x 10-6 cm2/s.

Figure 3: Absolute ocp values measured after the 
current interrupt plotted semi-logarithmically versus 
time. The curve is only shown for values t values from 
0 s to 2000 s since at longer times, significant scat-
tering due to the device limits regarding the voltage 
resolution is observed.

Summary
In this application note, we showed how to de-
termine the MacMullin number of electrolyte-
soaked separator foil, the tortuosity of that foil 
as well as finally the binary diffusion coefficient 
of the chosen binary liquid battery electrolyte.

The measured binary diffusion coefficient for 
1  mol/L LiPF6 solution in EC:DMC 1:1 (v:v) 
at 20 °C was determined to be 2.5 x 10-6 cm2/s 
which is very closed to the value determined by 
Landesfeind et al. for a quite similar electrolyte 
solution [2].
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